Sensorlab / Publications

Publications

Justin Cinkelj, Adnan Bekan, Marjan Sterk, Mihael Mohorcic, Carolina Fortuna
Design Trade-offs for the Wireless Management Networks of Constrained Device Testbeds
11th International Symposium on Wireless Communication Systems - (ISWCS'14), Barcelona, Spain

A relatively small number of testbeds based on constrained devices use a wireless management network, mostly because of the unreliable communication it enables. However, in some cases, such management networks are the only option due to the target location of such testbeds: outdoors, on light posts, buildings, etc. In this paper, we analyze the design trade-offs encountered when designing a wireless management network for testbeds based on constrained devices. First, we identify two use cases and the functionality needed by the management network in supporting them. Next, we discuss ways of providing the desired functionality and illustrate the decisions we took for designing and implementing the management network for the extension of the LOG-a-TEC testbed together with an initial evaluation. The analysis and the adopted decisions resulted in a management network that is separated from the experimental network providing improved application throughput, together with smaller application level updates/reconfiguration size that significantly shorten the time required to set up a new experiment.

*The version of the PDF available on this site contains four corrections (word constraint  was substituted with constrained in the title and 2x in the abstract and column overhead in Table II was recalculated) compared to the officially published version.

Topic: software
Type: conference
Keywords: wireless management network; dual stack Contiki; LOG-a-TEC experimental testbed; VESNA platform

PDF

Highlights

As part of activities in the FP7 CREW project the Department of Communication Systems at JSI installed two VESNA SNE-ESTHER devices in London. SNE-ESHTER is a radio receiver for the UHF band designed at JSI based on the VESNA sensor platform. Installed devices will be used for advanced spectrum sensing, contributing to the large scale Ofcom TV White Spaces pilot. One device was installed on the roof of a building in the King's College London Strand campus and the other on the roof of Queen Mary University London. Long term measurements will be used to support the experimentation with advanced, so called cognitive radio devices, as secondary users in currently unused parts of the spectrum.

Marko Pesko, Miha Smolnikar, Matevz Vucnik, Tomaz Javornik, Milica Pejanovic-Djurisic and Mihael Mohorcic published a paper titled "Smartphone with augmented gateway functionality as opportunistic WSN gateway device" in Wireless Personal Communications journal. They described how a Samsung phone connected via Bluetooth to a VESNA sensor node can act as a gateway to a wireless sensor network.

Chapter "Low-cost testbed development and its applications in cognitive radio prototyping" written by our colleagues Tomaž Šolc, Carolina Fortuna and Mihael Mohorcic has been published by Springer in the book  "Cognitive Radio and Networking for Heterogeneous Wireless Networks" from the Recent Advances and Visions for the Future series.

Jernej and Klemen talked with Nickola Naous about our new VESNA sensor node design. Read about The engineers behind the WSN Vesna on the IoTMonkey blog.

The CREW project entered a continuous open access phase. You can test your cognitive radio networking solution on 5 differrent testbed islands and advanced radio components, including our LOG-a-TEC testbed and the VESNA sensor network platform.

In cooperation with Adria Mobil we are developing a motorhome for the future. Adria Moving Lab is equipped with intelligent sensors that allow the vehicle to adapt to its user. This way we can optimize the use of consumables like fuel and water and exploit renewable sources of energy like solar power. The prototype has been unveiled at the Institute Jožef Stefan open days in April 2014.

Our paper "Trends in the development of communication networks: Cognitive networks" is the 10th among the 25th most cited articles published since 2009, extracted from Scopus, see all on the Elsevier web site.

Check the "Cognitive radio experimentation with VESNA platform" presentation by Miha Smolnikar at the School on Applications of Open Spectrum and White Spaces Technologies.

We are looking for a C programmers that would join the team developing the VESNA platform. Candidates that have previous experience with electronic circuit design, operating systems or open source projects will have priority.

 

We are constantly open for talented, open minded and hard working undergraduate students, interns and MSc/PhD candidates. Read more.

[ more highlights ]

Videolectures


Dynamic composition of communication services

Carolina Fortuna

Orchestrating Virtual Wireless Networks from Shared Resource Pools
Luiz DaSilva


VESNA in Kognitivni Radio

Tomaž Šolc

[ more videolectures ]

Demos


SensorNetwork testbed
Mash-up demo.

 

GSN demo

[ more demos ]

We use cookies to improve our website and your experience when using it.
To find out more about the cookies we use and how to delete them, see our privacy policy.