Using Personalized PageRank for Keyword Based Sensor Retrieval

Lorand Dali
Alexandra Moraru
Dunja Mladenić

Jožef Stefan Institute
Slovenia
Outline

- Motivation
- Problem Description
- Data Description
- System Architecture
- Search and Ranking
- Demo
- Conclusions
Motivation

Sensors are everywhere!

Source: M. Botts, G. Percivall, C. Reed, J. Davidson, OGC SWE: Overview And High Level Architecture
Motivation

• Sensor Web – OGC Vision

 • Web accessible sensor networks and archived sensor data that can be discovered and accessed using standard protocols and application program interfaces

 • Sensors will be able to
 • report position
 • connected to the web
 • register metadata
 • be readable and controllable remotely

Source: M. Botts, G. Percivall, C.Reed, J. Davidson, OGC SWE: Overview And High Level Architecture
Motivation

- We want a way of doing sensing that can make the data available to any application that needs that specific data

- How do we search for these data?

¹John Cox, Turning the world into a sensor network, NetworkWorld, August 11, 2010.
Problem Description

- System for **keyword based sensor search**, apply the Personalized PageRank algorithm for **ranking**, and filtered results based on **geo-location**.

- **What is the water temperature in the costal region of Goa?**
 - What about wind, currents, air temperature?

- Search and ranking criteria:
 - Textual description extracted from sensor’s metadata
 - Sensors measuring same phenomena
 - Sensors located on the same platform
 - Sensors deployed in the same network
Data Description

- Sensors in the area of ocean tides and currents, defined by\(^1\):
 - networks
 - platforms
 - sensors
 - observed property

- Large number of standardized sensor descriptions
 - the representation format is SensorML, facilitating parsing and extraction of relevant metadata.
 - each sensor can observe one property (i.e. air temperature, water salinity, etc.) and is attached to one platform;
 - each platform is deployed in one network and can have one or more sensors attached.
 - each platform is given the latitude and longitude for its location.

\(^1\)Center for Operational Oceanographic Products and Services, http://tidesandcurrents.noaa.gov/index.shtml
System Architecture

Sensor Descriptions (Text) → Inverted Index → Ranking Model (Personalized PageRank) → Geo Filtering → SEARCH ENGINE

Query
- keywords
- center of area of interest
- radius of area of interest
Search and Ranking

- The goal of the search
 - retrieve and rank a list of sensors based on the user’s request
 - Input:
 - keyword query
 - geographic location (given by latitude and longitude coordinates)
 - distance (interpreted as a radius around the location)
 - Output:
 - list of ranked sensors

- Text descriptions taken into consideration for keyword search:
 - platform, sensor and property names, given by system owners
 - standard name and definition of the property observed
 - From Climate and Forecast standard names parameter vocabulary. (MMI ontology)
 - sensor description given by owner
Search and Ranking

- PageRank algorithm
 - query independent ranking of web pages
 - from a directed graph => scores for each of the nodes
 - based on random walk model

- Personalized PageRank
 - Query dependent
 - subset Q of nodes matched by the keyword search are important apriori
 - constraint on the jumps in the random walk model
Equation for computing score:

\[p = d \cdot M \cdot p + (1 - d) \cdot u, \quad p, u \in \mathbb{R}^n, M \in \mathcal{M}(n) \]

- \(n \) is the number of nodes in the graph
- \(p \) is the PageRank vector containing the score for each node and is initialized with 0
- \(M \) is the transition matrix constructed in the following way:
 \[M[i,j] = \begin{cases}
 5, & \text{i and j measure the same thing} \\
 4, & \text{i and j are on the same platform} \\
 1, & \text{i and j are on the same deployment} \\
 0, & \text{otherwise}
 \end{cases} \]
- \(d \) is the damping parameter
- \(u \) is the jump vector and its entries are \(u[i] = \frac{1}{n}, \forall i. \)
 - constraint: \(u[i] = \frac{1}{|Q|} \) if \(i \in Q \) and 0 otherwise.
Search and Ranking

• Geo-Filtering of search results
 • sensor scores are added to calculate platform scores
 • platform score is adjusted by dividing with the number of radiuses it is away from the location which the user has specified
 • Small radius => Very strict about location
Demo
Search Example

Search results

Galveston Pleasure Pier
Station information for Galveston Pleasure Pier (8771510). Observed data: WaterLevel, WaterLevelPredictions, Winds, AirTemperature, WaterTemperature, BarometricPressure.

- sensor-WaterLevel - WaterLevel instrument for station 8771510
- sensor-WaterLevelPredictions - WaterLevelPredictions instrument for station 8771510
- sensor-Winds - Winds instrument for station 8771510
- sensor-Winds - Winds instrument for station 8771510
- sensor-AirTemperature - AirTemperature instrument for station 8771510
- sensor-WaterTemperature - WaterTemperature instrument for station 8771510
- sensor-BarometricPressure - BarometricPressure instrument for station 8771510

urn:x-noaa:def:station:NOAA.NOS.CO-OFS:8771510

Manchester
Station information for Manchester (8770777). Observed data: WaterLevel, WaterLevelPredictions, WaterTemperature.

- sensor-WaterLevel - WaterLevel instrument for station 8770777
- sensor-WaterLevelPredictions - WaterLevelPredictions instrument for station 8770777
- sensor-WaterTemperature - WaterTemperature instrument for station 8770777

urn:x-noaa:def:station:NOAA.NOS.CO-OFS:8770777

Eagle Point
Station information for Eagle Point (8771013). Observed data: WaterLevel, WaterLevelPredictions, Winds, AirTemperature, WaterTemperature, BarometricPressure, Conductivity, Salinity.

- sensor-WaterLevel - WaterLevel instrument for station 8771013
- sensor-WaterLevelPredictions - WaterLevelPredictions instrument for station 8771013
- sensor-Winds - Winds instrument for station 8771013
- sensor-Winds - Winds instrument for station 8771013

urn:x-noaa:def:station:NOAA.NOS.CO-OFS:8771013

Map data ©2010 Google, INEGI - Terms of Use
Performing the proposed ranking results in obtaining more platforms closer to the area of interest.

- We consider relevant also sensors located on the same platform or those that are in the same deployment.
Conclusions

- We need sensor search and ranking
- Personalized PageRank can be a solution to obtain the most relevant sensors

Future work
- Integrate more datasets
- Evaluation
 - Obtain relevance feedback data
 - Determine the parameters in an empirical way
- Considering measurements for search
THE END!